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• Coke Drums

Coke drums are large pressure vessels 
used in oil sands plants & refineries 
for the recovery of hydrocarbon 
product from reduced bitumen
• 30 feet Ø x 90 feet height
• operate to 50 psig, 900 °F, cyclic 

Construction materials
• composite plate construction, 1”

nominal thickness consisting of 
• TP 410S stainless steel cladding
• carbon steel or low alloy carbon 

steel (CS, C -½ Mo, Cr - Mo)

Problem – cracking of shell, attributed 
to presence of bulges and low cycle 
fatigue
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• Coke Drum Bulging
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• Why stress determination
• vessel bulging and cracking attributable to mechanical 

mechanism rather than metallurgical
• primary mechanical failure mechanism is

� low cycle thermal strain cycling 

• What are 
• the various loadings
• their nature
• contribution to the proposed failure mechanism
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Shell OD Strain - Measured

-200

0

200

400

600

800

1000

1200

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

time in [hours]

st
ra

in
 in

 [u
e]

CS 4 CS 5

Steam test

Vapor 
heat

Oil in

���� Water quench

COKING.COM 2009
COKER DRUM CRACKING

NB - the measured strains 
are not necessarily damaging
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• Coke Drum Vasing, “Hot”, “Cold” Spots, & Transients

• vasing action is a nominal response

• bitumen filling, water filling occur over 
same repeating nominal time period,     
nominal temperature range 
� plug flow nature

• drum vasing also occurs 
• during  coke cool-down due to insulating   

effect as coke forms, liquid � solid

• water quench addition

• localized distortions superimposed

• system hydraulics cause channel flow 
& deviations in temperature � strain, 
stress  

Steam / Bitumen /  
Water

Diameter decrease 
due to water quench 
temperature

Drum diameter 
decrease lags 
decrease in lower 
elevations
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• Comments on available published data
• Field data validity

• temperature data likely okay, except where insulation is left off

• strain data is highly suspect – fundamental errors in methodology

• thermal strain, eTH is 
• inconsistently accounted for, or

• not accounted for entirely

• evaluation of strain gauge readings is incorrect
• closed form expressions are not appropriate, equivalent strain

expression premised on 2D model; however, 3D strain state is 
present

• no data measured at most susceptible locations
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• Comments on available published data
• base material failure is accelerated likely due to HEAC

• field & published data regarding base material failure –

• proceeds rapidly in comparison to clad layer failure, 
months versus years

• dependant on operational specifics
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• Temperature loading – understanding the fundamentals
• for isotropic material, temperature increase results 

• in uniform strain
• no stress when body is free to deform

• the total strain in a body, eT is composed of two components 
• mechanical portion = eM [due to pressure, weight, + others]
• thermal portion = eTH

• then, eT = eM + eTH

• when thermal growth is constrained,  eT = 0 � eM = - eTH

• since eTH = α ·∆T, where α ≡ coefficient of thermal 
expansion or CTE and, the coke drum is in a biaxial 
stress state, then 

� thermal stress, σTH = - E ·α ·∆T / (1 – µ) 
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• Temperature loading [cont’d]
• thermal expansion in coke drum is constrained due to several 

mechanisms
• skirt structure
• cladding – base material differential expansion due to 

mismatch in coefficient of thermal expansion, CTE

• ∆T between adjacent parts of the structure due to varying 
exposure to incoming streams, i.e. bitumen [hot] and quench 
water [cold]

100 F          800 F

[in/in/F]          [in/in/F]

CTE-clad 6.0E-6      7.1E-6

CTE-base 6.6E-6      8.9E-6
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• Temperature loading [cont’d]

COKING.COM 2009
COKER DRUM CRACKING

Thermal Expansion vs Temperature for Various 
Materials of Construction
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• Temperature loading [cont’d]
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E (Young's Modulus) vs Temperature
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• Temperature loading [cont’d] - Temperature - Stress Profile Comparisons
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• Nature of Drum Failures
• Low Cycle Fatigue – da / dN

• characterized by high strain– low cycle
• exacerbated by presence of code acceptable defects  
• cladding crack failure initiation < 1,000 ~ 2,000 cycles
• cladding crack propagation thru thickness ~ 2,500 cycles

• Environmentally assisted fatigue – da / dt
• exposure of base material to hydrogen assisted mechanism
• short time to through failure – hours to months
• cleavage surfaces evident
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• Number of Drums Reporting 1st Through Wall Crack – API Survey
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* Final Report, 1996 API Coke Drum Survey, Nov 2003, API, Washington, D.C.
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• Nature of Drum Failures – cont’d
• Upper bound strain

• measured strain range, ∆ε = 2,500 ue ~ 3,400 ue
• calculated possible, ∆ε = 5,140 ue ~ 14,400 ue

M
ic

ro
-s

tr
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n 
-

ue

Time

• measurements fall well 
below values governed 
by system parameters

• system parameters 
indicate that strains 
repeat and will cause 
failure at susceptible 
locations
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εεεε

2,570    3,400    5,140    7,200   14,400

N          100,000   25,000    4,800    2,500      900

Years          274          68 13        7 2.5

• ε - N Low Cycle Strain Life Curve for SA 387 12 Plate [2¼ Cr – 1Mo]

* Sonoya, K., et al., ISIJ International v 31 (1991) n 12 p 1424 - 1430

• extremes

• failure can occur within 2.5 years

• potential service life of 274 years

• actual performance of unit is 
function of system specifics

COKING.COM 2009
COKER DRUM CRACKING



19

εεεε 2,570    3,400    5,140    7,200  14,400

σ σ σ σ 77.1      102.0    154.2    216.0    432.0  

N         10,000     4,200    1,200      550       70

Years     27          11.5        3          1.5       0.2

• σ - N Low Cycle Strain Life Curve per ASME VIII Div 2
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• ASME VIII Div 2 S – N chart is not 
appropriate for service life determination
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• Influence of Internal Defects
• Code allows internal defects

• For material thickness over ¾ inch to 2 inch, inclus ive [19 mm to 50.8 mm]
• Maximum size for isolated indication is ¼ “ [6.4 mm] diameter
• Table limiting defect size is given in ASME VIII Di v 1
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• Stress at Internal Defects

Stress at clad

Stress at internal defect

• largest strains/stresses at

• clad 

• internal defects

• local distortions

• maximum range of strains 
& stresses known due to 
system parameters
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• Conclusions
• field measurement techniques problematic

• thermal strain interpreted as mechanical strain

• measured strains well below upper bound strains

• strains at internal defects inaccessible, no measurement
• strains at material interface inaccessible, no measurement

• upper bound approach determines maximum strains obtainable
• strain level, # of exposure incidents governed by system hydraulics

• strain level, # of exposures govern service life

• local shell deformations will further affect strain levels
• crack initiation function of clad & base material integrity

• through-wall base material failure related to HEAC susceptibility
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• Evaluation

• improve field measurement techniques
• improve design procedures –

• ASME VIII Div 1 not adequate to address complex loadings
• more detailed & accurate estimation of stress required
• need to consider more than material yield strength properties

• material selection opportunities – less expensive options for 
same performance

• preventative maintenance & repair opportunities identifiable
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• Follow up work opportunities

• develop improved field stress measurement technique
• detection of internal defects and assessment technique
• assessment of influence of local shell distortions
• material constitutive modeling for better FEA modeling  
• characterization of base material performance in HEAC 

environment
• identify alternative clad materials
• develop appropriate design methodologies for coke drum

• Joint industry program – to leverage industry & NSERC resources
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• Contact

• Dr. Zihui Xia, University of Alberta
• zihui.xia@ualberta.ca
• T: 780 492 3870

• John Aumuller, EDA Ltd. 
• aumullerj@engineer.ca
• T: 780  484 5021
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